Manipulation of quantum dynamics: controllability and beyond

Gabriel Turinici

Université Paris Dauphine ${ }^{1}$
Poitiers, Aug 2010
${ }^{1}$ financial support from INRIA Rocquencourt, GIP-ANR C-QUID program and NSF-PICS program is acknowledged

Figure: R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001

Scheme 1.

Figure: SELECTIVE dissociation of chemical bonds (laser induced). Other examples: CF_{3} or CH_{3} from $\mathrm{CH}_{3} \mathrm{COCF}_{3} \ldots$ (R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).

Scheme 2.

Figure: Selective dissociation AND CREATION of chemical bonds (laser induced).
Other examples: CF_{3} or CH_{3} from $\mathrm{CH}_{3} \mathrm{COCF}_{3} \ldots$
(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).

Figure: Experimental High Harmonic Generation (argon gas) obtain high frequency lasers from lower frequencies input pulses $\omega \rightarrow n \omega$ (electron ionization that come back to the nuclear core) (R. Bartels et al. Nature, 406, 164, 2000).

Figure: Studying the excited states of proteins. F. Courvoisier et al., App.Phys.Lett.

L Optical manipulation of quantum dynamics

Figure: thunder control : experimental setting ; J. Kasparian Science, 301, 61 - 64 team of J.P.Wolf @ Lyon / Geneve , ...

Figure: thunder control : (B) random discharges ; (C) guided by a laser filament ; J. Kasparian Science, 301, 61-64 team of J.P.Wolf @ Lyon / Geneve , ...

Figure: LIDAR = atmosphere detection; the pulse is tailored for an optimal reconstruction at the target : 20km $=$ OK! ; J. Kasparian Science, 301, 61 - 64

- Optical manipulation of quantum dynamics

Figure: Creation of a white light of high intensity and spectral width ; J. Kasparian Science, 301, 61 - 64

Other applications

- EMERGENT technology
- creation of particular molecular states
- long term: logical gates for quantum computers
- fast "switch" in semiconductors
- ...

Outline

1 Controllability

- Background on controllability criteria

2 Control of rotational motion

- Physical picture

3 Controllability assessment with three independently polarized field components

4 Controllability for a locked combination of lasers
5 Controllability with two lasers

- Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions
- Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Single quantum system, bilinear control

Time dependent Schrödinger equation

$$
\left\{\begin{array}{l}
i \frac{\partial}{\partial t} \Psi(x, t)=H_{0} \Psi(x, t) \tag{1}\\
\Psi(x, t=0)=\Psi_{0}(x) .
\end{array}\right.
$$

Add external BILINEAR interaction (e.g. laser)

$$
\left\{\begin{array}{l}
i \frac{\partial}{\partial t} \Psi(x, t)=\left(H_{0}-\epsilon(t) \mu(x)\right) \Psi(x, t) \tag{2}\\
\Psi(x, t=0)=\Psi_{0}(x)
\end{array}\right.
$$

Ex.: $H_{0}=-\Delta+V(x)$, unbounded domain
Evolution on the unit sphere: $\|\Psi(t)\|_{L^{2}}=1, \forall t \geq 0$.

Controllability

A system is controllable if for two arbitrary points Ψ_{1} and Ψ_{2} on the unit sphere (or other ensemble of admissible states) it can be steered from Ψ_{1} to Ψ_{2} with an admissible control.

Norm conservation : controllability is equivalent, up to a phase, to say that the projection to a target is $=1$.

Galerkin discretization of the Time Dependent Schrödinger equation

$$
i \frac{\partial}{\partial t} \Psi(x, t)=\left(H_{0}-\epsilon(t) \mu\right) \Psi(x, t)
$$

- basis functions $\left\{\psi_{i} ; i=1, \ldots, N\right\}$, e.g. the eigenfunctions of the $H_{0}: \psi_{k}=e_{k} \psi_{k}$
- wavefunction written as $\Psi=\sum_{k=1}^{N} c_{k} \psi_{k}$
- We will still denote by H_{0} and μ the matrices $(N \times N)$ associated to the operators H_{0} and $\mu: H_{0 k l}=\left\langle\psi_{k}\right| H_{0}\left|\psi_{l}\right\rangle, \mu_{k l}=\left\langle\psi_{k}\right| \mu\left|\psi_{l}\right\rangle$,

LControllability

L Background on controllability criteria

Lie algebra approaches

To assess controllability of

$$
i \frac{\partial}{\partial t} \Psi(x, t)=\left(H_{0}-\epsilon(t) \mu\right) \Psi(x, t)
$$

construct the "dynamic" Lie algebra $L=\operatorname{Lie}\left(-i H_{0},-i \mu\right)$:

$$
\left\{\begin{array}{l}
\forall M_{1}, M_{2} \in L, \forall \alpha, \beta \in R: \alpha M_{1}+\beta M_{2} \in L \\
\forall M_{1}, M_{2} \in L,\left[M_{1}, M_{2}\right]=M_{1} M_{2}-M_{2} M_{1} \in L
\end{array}\right.
$$

Theorem If the group e^{L} is compact any $e^{M} \psi_{0}, M \in L$ can be attained.
"Proof" $M=-i A t$: trivial by free evolution
Trotter formula:

$$
e^{i(A B-B A)}=\lim _{n \rightarrow \infty}\left[e^{-i B / \sqrt{n}} e^{-i A / \sqrt{n}} e^{i B / \sqrt{n}} e^{i A / \sqrt{n}}\right]^{n}
$$

- Controllability

- Background on controllability criteria

Operator synthesis ("lateral parking")

Trotter formula: $e^{i[A, B]}=\lim _{n \rightarrow \infty}\left[e^{-i B / \sqrt{n}} e^{-i A / \sqrt{n}} e^{i B / \sqrt{n}} e^{i A / \sqrt{n}}\right]^{n}$
$e^{ \pm i A}=$ advance $/$ reverse $; e^{ \pm i B}=$ turn left/right

Corollary. If $L=u(N)$ or $L=s u(N)$ (the (null-traced) skew-hermitian matrices) then the system is controllable.
"Proof" For any Ψ_{0}, Ψ_{T} there exists a "rotation" U in $U(N)=e^{u(N)}\left(\right.$ or in $\left.S U(N)=e^{s u(N)}\right)$ such that $\Psi_{T}=U \Psi_{0}$.

- (Albertini \& D'Alessandro 2001) Controllability also true for L isomorphic to $s p(N / 2)$ (unicity).
$s p(N / 2)=\left\{M: M^{*}+M=0, M^{t} J+J M=0\right\}$ where J is a matrix unitary equivalent to $\left(\begin{array}{cc}0 & I_{N / 2} \\ -I_{N / 2} & 0\end{array}\right)$ and $I_{N / 2}$ is the identity matrix of dimension $N / 2$

Outline

1 Controllability
■ Background on controllability criteria
2 Control of rotational motion
■ Physical picture
3 Controllability assessment with three independently polarized field components
4. Controllability for a locked combination of lasers

5 Controllability with two lasers

- Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions
- Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Physical picture

- linear rigid molecule, Hamiltonian $H=B \hat{\jmath}^{2}, B=$ rotational constant, $\hat{J}=$ angular momentum operator.
- control = electric field $\overrightarrow{\epsilon(t)}$ by the dipole operator \vec{d}. Field $\overrightarrow{\epsilon(t)}$ is multi-polarized i.e. x, y, z components tuned independently

Time dependent Schrödinger equation ($\theta, \phi=$ polar coordinates):

$$
\begin{align*}
& i \hbar \frac{\partial}{\partial t}|\psi(\theta, \phi, t)\rangle=\left(B \hat{\jmath}^{2}-\overrightarrow{\epsilon(t)} \cdot \vec{d}\right)|\psi(\theta, \phi, t)\rangle \tag{3}\\
& |\psi(0)\rangle=\left|\psi_{0}\right\rangle \tag{4}
\end{align*}
$$

Discretization

Eigenbasis decomposition of $B \hat{\jmath}^{2}$ with spherical harmonics $(J \geq 0$ and $-J \leq m \leq J$):
$B \hat{J}^{2}\left|Y_{J}^{m}\right\rangle=E_{J}\left|Y_{J}^{m}\right\rangle$,
$E_{J}=B J(J+1)$. highly degenerate !
Note $E_{J+1}-E_{J}=2 B(J+1)$, we truncate : $J \leq J_{\max }$.
Refs: G.T. H. Rabitz: J Phys A (to appear), preprint http://hal.archives-ouvertes.fr/hal-00450794/en/

Dipole interaction

Dipole in space fixed cartesian coordinates $\overrightarrow{\epsilon(t)} \cdot \vec{d}=\epsilon_{x}(t) x+\epsilon_{y}(t) y+\epsilon_{z}(t) z \vec{x}, \vec{y}$ and \vec{z}, components $\epsilon_{x}(t), \epsilon_{y}(t), \epsilon_{z}(t)=$ independent.

Using as basis the $J=1$ spherical harmonics

$$
\begin{equation*}
Y_{1}^{ \pm 1}=\frac{\mp 1}{2} \sqrt{\frac{3}{2 \pi}} \frac{x \pm i y}{r}, \quad Y_{1}^{0}=\frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{z}{r} \tag{5}
\end{equation*}
$$

We obtain $\overrightarrow{\epsilon(t)} \cdot \vec{d}=\epsilon_{0}(t) d_{10} Y_{1}^{0}+\epsilon_{+1}(t) d_{11} Y_{1}^{1}+\epsilon_{-1}(t) d_{1-1} Y_{1}^{-1}$. After rescaling

$$
\begin{equation*}
\overrightarrow{\epsilon(t)} \cdot \vec{d}=\epsilon_{0}(t) Y_{1}^{0}+\epsilon_{+1}(t) Y_{1}^{1}+\epsilon_{-1}(t) Y_{1}^{-1} \tag{6}
\end{equation*}
$$

Discretization

$D_{k}=$ matrix of $Y_{1}^{k}(k=-1,0,1)$. Entries:
$\left(D_{k}\right)_{(J m),\left(J^{\prime} m^{\prime}\right)}=\left\langle Y_{J}^{m}\right| Y_{1}^{k}\left|Y_{J^{\prime}}^{m^{\prime}}\right\rangle=\int\left(Y_{J}^{m}\right)^{*}(\theta, \phi) Y_{1}^{k}(\theta, \phi) Y_{J^{\prime}}^{m^{\prime}}(\theta, \phi) \sin (\theta) d \theta a$
$=\sqrt{\frac{3(2 J+1)\left(2 J^{\prime}+1\right)}{4 \pi}}\left(\begin{array}{lll}J & 1 & J^{\prime} \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}J & 1 & J^{\prime} \\ m & k & m^{\prime}\end{array}\right)$.
$\left(\begin{array}{ccc}J & 1 & J^{\prime} \\ 0 & 0 & 0\end{array}\right)$ and $\left(\begin{array}{ccc}J & 1 & J^{\prime} \\ m & k & m^{\prime}\end{array}\right)=$ Wigner 3J-symbols
Entries are zero except when $m+k+m^{\prime}=0$ and $\left|J-J^{\prime}\right|=1$.

Discrete TDSE

$\Psi(t)=$ coefficients of $\psi(\theta, \phi, t)$ with respect to the spherical harmonic basis

$$
\left\{\begin{array}{l}
i \frac{\partial}{\partial t} \Psi(t)=\left(E-\epsilon_{0}(t) D_{0}+\epsilon_{-1}(t) D_{-1}+\epsilon_{1}(t) D_{1}\right) \Psi(t) \tag{8}\\
\Psi(t=0)=\Psi_{0}
\end{array}\right.
$$

$E=$ diagonal matrix with entries E_{J} for all $J m,-J \leq m \leq J$, $J \leq J_{\text {max }}$.

Coupling structure

Figure: The three matrices $D_{k}, k=-1,0,1$ coupling the eigenstates are each represented by a different color (green, black, red) for $J_{\max }=2$. On the J-th line from bottom, the states are from left to right in order $\left|Y_{J}^{m=-J}\right\rangle, \ldots,\left|Y_{J}^{m=J}\right\rangle$ for even values of J and $\left|Y_{J}^{m=J}\right\rangle, \ldots,\left|Y_{J}^{m=-J}\right\rangle$ for odd values of J. The m quantum number labelings are indicated in the figure.

Outline

1 Controllability
■ Background on controllability criteria
2 Control of rotational motion

- Physical picture

3 Controllability assessment with three independently polarized field components

4 Controllability for a locked combination of lasers
5 Controllability with two lasers

- Field shaped in the \vec{z} and $\frac{\vec{x}+\vec{y}}{\sqrt{2}}$ directions
- Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Controllability with 3 fields

Theorem (GT, H.Rabitz '10)

Let $J_{\max } \geq 1$ and denote $N=\left(J_{\max }+1\right)^{2}$. Let E, D_{k}, $k=-1,0,1$ be $N \times N$ matrices indexed by Jm with $J=0, \ldots, J_{\max },|m| \leq J$ where:

$$
\begin{align*}
& E_{J m ; J^{\prime} m^{\prime}}=\delta_{J J^{\prime}} \delta_{m m^{\prime}} E_{J} \tag{9}\\
& \left(D_{0}\right)_{J m, J^{\prime} m^{\prime}} \neq 0 \Leftrightarrow\left|J-J^{\prime}\right|=1, m+m^{\prime}=0 \tag{10}\\
& \left(D_{1}\right)_{J m, J^{\prime} m^{\prime}} \neq 0 \Leftrightarrow\left|J-J^{\prime}\right|=1, m+m^{\prime}+1=0 \tag{11}\\
& \left(D_{-1}\right)_{J m, J^{\prime} m^{\prime}} \neq 0 \Leftrightarrow\left|J-J^{\prime}\right|=1, m+m^{\prime}-1=0 . \tag{12}
\end{align*}
$$

and recall that

$$
\begin{equation*}
E_{J}=J(J+1) \tag{13}
\end{equation*}
$$

Then the system described by E, D_{-1}, D_{0}, D_{1} is controllable.

Controllability with 3 fields

Proof Idea: construct the Lie algebra spanned by $i E, i D_{k}$; begin by first iterating the commutators, obtain generators for any transition (degenerate); then combine the results using the coupling structure.

Controllability with 3 fields

Theorem (GT, H.R '10)

Consider a finite dimensional system expressed in an eigenbasis of its internal Hamiltonian E with eigenstates indexed $a=(J m)$ with $J=0, \ldots, J_{\text {max }}, m=1, \ldots, m_{J}^{\max }, m_{0}^{\max }=1$, and such that

$$
\begin{equation*}
E_{J m ; J^{\prime} m^{\prime}}=\delta_{J J^{\prime}} \delta_{m m^{\prime}} E_{J}, \quad E_{J+1}-E_{J} \neq E_{J^{\prime}+1}-E_{J^{\prime}}, \forall J \neq J^{\prime} \tag{14}
\end{equation*}
$$

Consider K coupling matrices $D_{k}, k=1, \ldots, K$ such that

$$
\begin{equation*}
\left(D_{k}\right)_{(J m),\left(J^{\prime} m^{\prime}\right)} \neq 0 \Rightarrow\left|J-J^{\prime}\right|=1 \tag{15}
\end{equation*}
$$

$\left(D_{k}\right)_{(J m),\left(J^{\prime} m^{\prime}\right)} \neq 0,\left(D_{k}\right)_{(J m),\left(J^{\prime \prime} m^{\prime \prime}\right)} \neq 0, J \leq J^{\prime} \leq J^{\prime \prime} \Rightarrow J^{\prime}=J^{\prime \prime}, m^{\prime}=m$
If the graph of the system is connected then the system is controllable.

Controllability with 3 fields

Remark

The results can be extended to the case of a symmetric top molecule; the energy levels are described by three quantum numbers $E_{J K m}$ with $|m| \leq J,|K| \leq J$ and

$$
\begin{equation*}
E_{J K m}=C_{1} J(J+1)+C_{2} K^{2} \tag{17}
\end{equation*}
$$

(for some constants C_{1} and C_{2}); if the initial state is in the ground state, or any other state with $K=0$ the coupling operators have the same structure as in Thm. 4.1 and thus any linear combination of eigenstates with quantum numbers $J, K=0, m$ can be reached (same result directly applies).

Outline

1 Controllability

■ Background on controllability criteria
2 Control of rotational motion

- Physical picture

3 Controllability assessment with three independently polarized field components

4 Controllability for a locked combination of lasers
5 Controllability with two lasers

- Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions
- Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Controllability with fixed linear combination

What if $\epsilon_{k}(t), k=-1,0,1$ are not chosen independently but with a locked linear dependence through coefficients α_{k} :
$\overrightarrow{\epsilon(t)} \cdot \vec{d}=\epsilon(t)\left\{\alpha_{-1} Y_{1}^{-1}+\alpha_{0} Y_{1}^{0}+\alpha_{1} Y_{1}^{1}\right\}$.
There exist non-controllable cases for any given linear combination:
$E=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right), \overrightarrow{e(t)} \cdot \vec{d}=\epsilon(t) \mu, \mu=\left(\begin{array}{cccc}0 & \alpha_{-1} & \alpha_{0} & \alpha_{1} \\ \alpha_{-1} & 0 & 0 & 0 \\ \alpha_{0} & 0 & 0 & 0 \\ \alpha_{1} & 0 & 0 & 0\end{array}\right)$
This system is such that for all $\alpha_{k}(k=-1,0,1)$ the Lie algebra generated by $i E$ and $i \mu$ is $u(2)$, thus the system is not controllable with one laser field (but ok with 3).

Controllability with fixed linear combination

Theorem

Let A, B_{1}, \ldots, B_{K} be elements of a finite dimensional Lie algebra L. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right) \in \mathbb{R}^{K}$ we denote L_{α} as the Lie algebra generated by A and $B_{\alpha}=\sum_{k=1}^{K} \alpha_{k} B_{k}$. Define the maximal dimension of L_{α}

$$
\begin{equation*}
d_{A, B_{1}, \ldots, B_{K}}^{1}=\max _{\alpha \in \mathbb{R}^{K}} \operatorname{dim}_{\mathbb{R}}\left(L_{\alpha}\right) . \tag{19}
\end{equation*}
$$

Then with probability one with respect to $\alpha, \operatorname{dim}\left(L_{\alpha}\right)=d_{A, B_{1}, \ldots, B_{K}}^{1}$.

Remark

The dimension $d_{A, B_{1}, \ldots, B_{K}}^{1}$ is specific to the choice of coupling operators B_{k} (easily computed).

Controllability with fixed linear combination

Proof. List of all possible iterative commutators constructed from A and B_{α} :
$\mathcal{C}^{\alpha}=\left\{\zeta_{1}^{\alpha}=A, \zeta_{2}^{\alpha}=B, \zeta_{3}^{\alpha}=\left[A, B_{\alpha}\right], \zeta_{4}^{\alpha}=\left[B_{\alpha}, A\right], \zeta_{5}^{\alpha}=\left[A,\left[A, B_{\alpha}\right]\right], \ldots\right\}$.
Note : $\zeta_{i_{1}}^{\alpha}, \ldots, \zeta_{i_{r}}^{\alpha}=$ linearly independent \Longleftrightarrow Gram determinant is non-null (analytic criterion of α);
One of the following alternatives is true:

- either this function is identically null for all α (which is the case e.g., for $\left\{\zeta_{3}^{\alpha}, \zeta_{4}^{\alpha}\right\}$)
- or it is non-null everywhere with the possible exception of a zero measure set.
Let \mathcal{F} dense in \mathbb{R}^{K} such that if $\zeta_{i_{1}}^{\alpha}, \ldots, \zeta_{i_{r}}^{\alpha}$ are linearly independent for one value of $\alpha \in \mathbb{R}^{K}$ then they are linearly independent for all $\alpha^{\prime} \in \mathcal{F}$.

Controllability with fixed linear combination

Denote by α^{\star} some value such that $\operatorname{dim}_{\mathbb{R}}\left(L_{\alpha^{\star}}\right)=d_{A, B_{1}, \ldots, B_{K}}^{1}$; then there exists a set such that $\left\{\zeta_{i_{1}}^{\alpha^{\star}}, \ldots, \zeta_{i_{d_{A}}^{1} B_{1}, \ldots, B_{K}}^{\alpha^{\star}}\right\}$ are linearly independent; thus $\left\{\zeta_{i_{1}}^{\alpha^{\star}}, \ldots, \zeta_{i_{M}^{1}}^{\alpha^{\star}}\right\}$ linearly independent for any
$\alpha \in \mathcal{F}$; thus $\operatorname{dim}_{\mathbb{R}}\left(L_{\alpha}\right) \geq d_{A, B_{1}, \ldots, B_{K}}^{1}$ for all $\alpha \in \mathcal{F}$, q.e.d. (maximality of $d_{A, B_{1}, \ldots, B_{K}}^{1}$).

Remark

In numerical tests the Lie algebra generated by $i E$ and $i D_{\alpha}=i \sum_{k=-1}^{1} \alpha_{k} D_{k}$. always had dimension $(N-2)^{2}$; can this be proved ???

Open question: the algebras for $\alpha \in \mathbb{R}^{K}$ are isomorphic to subalgebras of the Lie algebra with maximal dimension ?

Outline

1 Controllability

- Background on controllability criteria

2 Control of rotational motion
■ Physical picture
? Controllability assessment with three independently polarized field components

4 Controllability for a locked combination of lasers
5 Controllability with two lasers

- Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions
- Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Controllability with two lasers

Theorem

Let A, B_{1}, \ldots, B_{K} be elements of a finite dimensional Lie algebra L. We denote for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right) \in \mathbb{R}^{K}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{K}\right) \in \mathbb{R}^{K}$ by $L_{\alpha, \beta}$ the Lie algebra generated by $A, B_{\alpha}=\sum_{k=1}^{K} \alpha_{k} B_{k}$ and $B_{\beta}=\sum_{k=1}^{K} \beta_{k} B_{k}$.
Define the maximal dimension of L_{α}

$$
\begin{equation*}
d_{A, B_{1}, \ldots, B_{K}}^{2}=\max _{\alpha \in \mathbb{R}^{K}} \operatorname{dim}_{\mathbb{R}}\left(L_{\alpha, \beta}\right) . \tag{21}
\end{equation*}
$$

Then with probability one with respect to $\alpha, \beta, \operatorname{dim}\left(L_{\alpha, \beta}\right)=d_{M}^{2}$.

- Controllability with two lasers

LField shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions
Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions

Figure: Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions, same conventions apply. The $\epsilon_{-1}=0$, the coupling realized by the operator D_{-1} disappears and the state $\left|Y_{J_{\text {max }}}^{m=J_{\text {max }}}\right\rangle$ is not connected with the others. In particular the population in state $\left|Y_{J_{\text {max }}}^{m=J_{\max }}\right\rangle$ cannot be changed by the two lasers and thus will be a conserved quantity.

Field shaped in the \vec{z} and $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ directions

Theorem

Consider the model of Thm.4.1 with $\epsilon_{-1}=0$. Let $\left|\psi_{I}\right\rangle$ and $\left|\psi_{F}\right\rangle$ be two states that have the same population in $\left|Y_{J_{\max }}^{m=J_{\max }}\right\rangle$ i.e., $\left|\left\langle\psi_{I}, Y_{J_{\max }}^{m=J_{\max }}\right\rangle\right|^{2}=\left|\left\langle\psi_{F}, Y_{J_{\max }}^{\left.m=J_{\max }\right\rangle}\right\rangle\right|^{2}$. Then $\left|\psi_{F}\right\rangle$ can be reached from $\left|\psi_{I}\right\rangle$ with controls $\epsilon_{0}(t)$ and $\epsilon_{1}(t)$.
Similar analysis applies for \vec{z} and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions; the population of $\left|Y_{J_{\max }}^{m=-J_{\max }}\right\rangle$ is conserved and the compatibility relation reads:

$$
\begin{equation*}
\left|\left\langle\psi_{I}, Y_{J_{\max }}^{m=-J_{\max }}\right\rangle\right|^{2}=\left|\left\langle\psi_{F}, Y_{J_{\max }}^{m=-J_{\max }}\right\rangle\right|^{2} \tag{22}
\end{equation*}
$$

- Controllability with two lasers

LField shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Figure: Field shaped in the $\frac{\vec{X}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions. Two connectivity sets appear: $X_{1}=\left\{\left|Y_{0}^{0}\right\rangle,\left|Y_{1}^{ \pm 1}\right\rangle,\left|Y_{2}^{ \pm 2}\right\rangle,\left|Y_{2}^{0}\right\rangle, \ldots\right\}$ connected with $\left|Y_{0}^{0}\right\rangle$ (filled black rectangles) and $X_{2}=\left\{\left|Y_{1}^{0}\right\rangle,\left|Y_{2}^{ \pm 1}\right\rangle,\left|Y_{3}^{ \pm 2}\right\rangle,\left|Y_{3}^{0}\right\rangle, \ldots\right\}$. connected with $\left|Y_{1}^{0}\right\rangle$ (empty rectangles).

Field shaped in the $\frac{\vec{x}+i \vec{y}}{\sqrt{2}}$ and $\frac{\vec{x}-i \vec{y}}{\sqrt{2}}$ directions

Conservation law

$$
\begin{equation*}
\sum_{\left|Y_{J}^{m}\right\rangle \in X_{1}}\left|\left\langle\psi_{I}, Y_{J}^{m}\right\rangle\right|^{2}=\sum_{\left|Y_{J}^{m}\right\rangle \in X_{1}}\left|\left\langle\psi_{F}, Y_{J}^{m}\right\rangle\right|^{2} \tag{23}
\end{equation*}
$$

Theorem

Consider the model of the Thm.4.1 with $\epsilon_{-1}=0$. Let $\left|\psi_{\prime}\right\rangle$ and $\left|\psi_{F}\right\rangle$ be two states compatible in the sense of Eqn. (23). Then $\left|\psi_{F}\right\rangle$ can be reached from $\left|\psi_{I}\right\rangle$ with controls $\epsilon_{-1}(t)$ and $\epsilon_{1}(t)$.

Proof Construct Lie algebra for each laser then use the controllability criterion for independent systems.

