Manipulation of quantum dynamics: controllability and beyond

Gabriel Turinici

Université Paris Dauphine 1

Poitiers, Aug 2010

¹financial support from INRIA Rocquencourt, GIP-ANR C-QUID program and NSF-PICS program is acknowledged

Figure: R. J. Levis, G.M. Menkir, and H. Rabitz. *Science*, 292:709–713, 2001

Scheme 1.

Figure: SELECTIVE dissociation of chemical bonds (laser induced).

Other examples: CF_3 or CH_3 from CH_3COCF_3 ...

(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).

Scheme 2.

Figure: Selective dissociation AND CREATION of chemical bonds (laser induced).

Other examples: CF_3 or CH_3 from CH_3COCF_3 ...

(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).

Figure: Experimental High Harmonic Generation (argon gas) obtain high frequency lasers from lower frequencies input pulses $\omega \to n\omega$ (electron ionization that come back to the nuclear core) (R. Bartels et al. Nature, 406, 164, 2000).

Figure: Studying the excited states of proteins. F. Courvoisier et al., App.Phys.Lett.

Figure: thunder control : experimental setting ; J. Kasparian Science, 301, 61-64 team of J.P.Wolf @ Lyon / Geneve , ...

Figure: thunder control: (B) random discharges; (C) guided by a laser filament; J. Kasparian Science, 301, 61 – 64 team of J.P.Wolf @ Lyon / Geneve, ...

Figure: LIDAR = atmosphere detection; the pulse is tailored for an optimal reconstruction at the target : 20km = OK!; J. Kasparian Science, 301, 61 - 64

 $\label{eq:Figure: Creation of a white light of high intensity and spectral width ; J. Kasparian Science, 301, 61 - 64$

Other applications

- EMERGENT technology
- creation of particular molecular states
- long term: logical gates for quantum computers
- fast "switch" in semiconductors

• ...

Outline

- 1 Controllability
 - Background on controllability criteria
- 2 Control of rotational motion
 - Physical picture
- 3 Controllability assessment with three independently polarized field components
- 4 Controllability for a locked combination of lasers
- 5 Controllability with two lasers
 - Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions
 - Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Single quantum system, bilinear control

Time dependent Schrödinger equation

$$\begin{cases}
i \frac{\partial}{\partial t} \Psi(x, t) = H_0 \Psi(x, t) \\
\Psi(x, t = 0) = \Psi_0(x).
\end{cases}$$
(1)

Add external BILINEAR interaction (e.g. laser)

$$\begin{cases}
i \frac{\partial}{\partial t} \Psi(x, t) = (H_0 - \epsilon(t)\mu(x))\Psi(x, t) \\
\Psi(x, t = 0) = \Psi_0(x)
\end{cases}$$
(2)

Ex.: $H_0 = -\Delta + V(x)$, unbounded domain Evolution on the unit sphere: $\|\Psi(t)\|_{L^2} = 1$, $\forall t \geq 0$.

Controllability

Background on controllability criteria

Controllability

A system is controllable if for two arbitrary points Ψ_1 and Ψ_2 on the unit sphere (or other ensemble of admissible states) it can be steered from Ψ_1 to Ψ_2 with an admissible control.

Norm conservation : controllability is equivalent, up to a phase, to say that the projection to a target is =1.

Galerkin discretization of the Time Dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(x,t)=(H_0-\epsilon(t)\mu)\Psi(x,t)$$

- basis functions $\{\psi_i; i=1,...,N\}$, e.g. the eigenfunctions of the H_0 : $\psi_k=e_k\psi_k$
- wavefunction written as $\Psi = \sum_{k=1}^{N} c_k \psi_k$
- We will still denote by H_0 and μ the matrices $(N \times N)$ associated to the operators H_0 and μ : $H_{0kl} = \langle \psi_k | H_0 | \psi_l \rangle$, $\mu_{kl} = \langle \psi_k | \mu | \psi_l \rangle$,

Lie algebra approaches

To assess controllability of

$$i\frac{\partial}{\partial t}\Psi(x,t)=(H_0-\epsilon(t)\mu)\Psi(x,t)$$

construct the "dynamic" Lie algebra $L = Lie(-iH_0, -i\mu)$:

$$\begin{cases} \forall M_1, M_2 \in L, \ \forall \alpha, \beta \in \mathbb{R} : \alpha M_1 + \beta M_2 \in L \\ \forall M_1, M_2 \in L, [M_1, M_2] = M_1 M_2 - M_2 M_1 \in L \end{cases}$$

Theorem If the group e^L is compact any $e^M \psi_0$, $M \in L$ can be attained.

"Proof" M = -iAt: trivial by free evolution Trotter formula:

$$e^{i(AB-BA)} = \lim_{n \to \infty} \left[e^{-iB/\sqrt{n}} e^{-iA/\sqrt{n}} e^{iB/\sqrt{n}} e^{iA/\sqrt{n}} \right]^n$$

Operator synthesis ("lateral parking")

Trotter formula:
$$e^{i[A,B]} = \lim_{n \to \infty} \left[e^{-iB/\sqrt{n}} e^{-iA/\sqrt{n}} e^{iB/\sqrt{n}} e^{iA/\sqrt{n}} \right]^n$$

$$e^{\pm iA}={
m advance/reverse}$$
 ; $e^{\pm iB}={
m turn~left/right}$

Corollary. If L=u(N) or L=su(N) (the (null-traced) skew-hermitian matrices) then the system is controllable. "Proof" For any Ψ_0 , Ψ_T there exists a "rotation" U in $U(N)=e^{u(N)}$ (or in $SU(N)=e^{su(N)}$) such that $\Psi_T=U\Psi_0$. • (Albertini & D'Alessandro 2001) Controllability also true for L isomorphic to sp(N/2) (unicity). $sp(N/2)=\{M:M^*+M=0,M^tJ+JM=0\}$ where J is a matrix unitary equivalent to $\begin{pmatrix} 0 & I_{N/2} \\ -I_{N/2} & 0 \end{pmatrix}$ and $I_{N/2}$ is the identity matrix of dimension N/2

Outline

- 1 Controllability
 - Background on controllability criteria
- 2 Control of rotational motion
 - Physical picture
- 3 Controllability assessment with three independently polarized field components
- 4 Controllability for a locked combination of lasers
- 5 Controllability with two lasers
 - Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions
 - Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Physical picture

- linear rigid molecule, Hamiltonian $H=B\hat{J}^2$, B= rotational constant, $\hat{J}=$ angular momentum operator.
- control= electric field $\overrightarrow{\epsilon(t)}$ by the dipole operator \overrightarrow{d} . Field $\overrightarrow{\epsilon(t)}$ is multi-polarized i.e. x, y, z components tuned independently

Time dependent Schrödinger equation ($\theta, \phi = \text{polar coordinates}$):

$$i\hbar \frac{\partial}{\partial t} |\psi(\theta, \phi, t)\rangle = (B\hat{J}^2 - \overrightarrow{\epsilon(t)} \cdot \overrightarrow{d})|\psi(\theta, \phi, t)\rangle$$
 (3)

$$|\psi(0)\rangle = |\psi_0\rangle,\tag{4}$$

Discretization

Eigenbasis decomposition of $B\hat{J}^2$ with spherical harmonics $(J \ge 0$ and $-J \le m \le J)$:

$$B\hat{J}^2|Y_J^m\rangle=E_J|Y_J^m\rangle,$$

$$E_J = BJ(J+1)$$
. highly degenerate!

Note
$$E_{J+1} - E_J = 2B(J+1)$$
, we truncate : $J \leq J_{max}$.

Refs: G.T. H. Rabitz : J Phys A (to appear), preprint http://hal.archives-ouvertes.fr/hal-00450794/en/

Dipole interaction

Dipole in space fixed cartesian coordinates $\overrightarrow{\epsilon(t)} \cdot \overrightarrow{d} = \epsilon_x(t)x + \epsilon_y(t)y + \epsilon_z(t)z \overrightarrow{x}$, \overrightarrow{y} and \overrightarrow{z} , components $\epsilon_x(t)$, $\epsilon_y(t)$, $\epsilon_z(t)$ = independent.

Using as basis the J=1 spherical harmonics

$$Y_1^{\pm 1} = \frac{\mp 1}{2} \sqrt{\frac{3}{2\pi}} \frac{x \pm iy}{r}, \ Y_1^0 = \frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{z}{r},$$
 (5)

We obtain $\overrightarrow{\epsilon(t)} \cdot \overrightarrow{d} = \epsilon_0(t) d_{10} Y_1^0 + \epsilon_{+1}(t) d_{11} Y_1^1 + \epsilon_{-1}(t) d_{1-1} Y_1^{-1}$. After rescaling

$$\overrightarrow{\epsilon(t)} \cdot \overrightarrow{d} = \epsilon_0(t) Y_1^0 + \epsilon_{+1}(t) Y_1^1 + \epsilon_{-1}(t) Y_1^{-1}. \tag{6}$$

Discretization

$$D_k = \text{matrix of } Y_1^k \ (k = -1, 0, 1)$$
. Entries:

$$\begin{pmatrix} J & 1 & J' \\ 0 & 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} J & 1 & J' \\ m & k & m' \end{pmatrix}$ = Wigner 3J-symbols

Entries are zero except when m + k + m' = 0 and |J - J'| = 1.

Discrete TDSE

 $\Psi(t)$ = coefficients of $\psi(\theta, \phi, t)$ with respect to the spherical harmonic basis

$$\begin{cases}
i\frac{\partial}{\partial t}\Psi(t) = (E - \epsilon_0(t)D_0 + \epsilon_{-1}(t)D_{-1} + \epsilon_1(t)D_1)\Psi(t) \\
\Psi(t = 0) = \Psi_0.
\end{cases}$$
(8)

E= diagonal matrix with entries E_J for all Jm, $-J \leq m \leq J$, $J \leq J_{max}$.

Control of rotational motion

Physical picture

Coupling structure

Figure: The three matrices D_k , k=-1,0,1 coupling the eigenstates are each represented by a different color (green, black, red) for $J_{max}=2$. On the J-th line from bottom, the states are from left to right in order $|Y_J^{m=-J}\rangle,...,|Y_J^{m=J}\rangle$ for even values of J and $|Y_J^{m=J}\rangle,...,|Y_J^{m=-J}\rangle$ for odd values of J. The M quantum number labelings are indicated in the figure.

Outline

- 1 Controllability
 - Background on controllability criteria
- 2 Control of rotational motion
 - Physical picture
- 3 Controllability assessment with three independently polarized field components
- 4 Controllability for a locked combination of lasers
- 5 Controllability with two lasers
 - Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions
 - Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Theorem (GT, H.Rabitz '10)

Let $J_{max} \ge 1$ and denote $N = (J_{max} + 1)^2$. Let E, D_k , k = -1, 0, 1 be $N \times N$ matrices indexed by J_m with $J = 0, ..., J_{max}$, $|m| \le J$ where:

$$E_{Jm;J'm'} = \delta_{JJ'}\delta_{mm'}E_{J} \tag{9}$$

$$(D_0)_{Jm,J'm'} \neq 0 \Leftrightarrow |J-J'| = 1, \ m+m' = 0$$
 (10)

$$(D_1)_{Jm,J'm'} \neq 0 \Leftrightarrow |J-J'| = 1, \ m+m'+1=0$$
 (11)

$$(D_{-1})_{Jm,J'm'} \neq 0 \Leftrightarrow |J-J'| = 1, \ m+m'-1 = 0. \ (12)$$

and recall that

$$E_J = J(J+1). (13)$$

Then the system described by E, D_{-1}, D_0, D_1 is controllable.

Proof Idea: construct the Lie algebra spanned by iE, iD_k ; begin by first iterating the commutators, obtain generators for any transition (degenerate); then combine the results using the coupling structure.

Theorem (GT, H.R '10)

Consider a finite dimensional system expressed in an eigenbasis of its internal Hamiltonian E with eigenstates indexed a = (Jm) with $J = 0, ..., J_{max}, m = 1, ..., m_1^{max}, m_0^{max} = 1$, and such that

$$E_{Jm;J'm'} = \delta_{JJ'}\delta_{mm'}E_{J}, \quad E_{J+1} - E_{J} \neq E_{J'+1} - E_{J'}, \forall J \neq J'. \quad (14)$$

Consider K coupling matrices D_k , k = 1, ..., K such that

$$(D_k)_{(Jm),(J'm')} \neq 0 \Rightarrow |J - J'| = 1$$
 (15)

$$(D_k)_{(Jm),(J'm')} \neq 0, (D_k)_{(Jm),(J''m'')} \neq 0, \ J \leq J' \leq J'' \Rightarrow J' = J'', m' = m$$
(16)

If the graph of the system is connected then the system is controllable.

4 L F 4 DF F 4 E F E 994

Remark

The results can be extended to the case of a symmetric top molecule; the energy levels are described by three quantum numbers E_{JKm} with $|m| \leq J$, $|K| \leq J$ and

$$E_{JKm} = C_1 J(J+1) + C_2 K^2, (17)$$

(for some constants C_1 and C_2); if the initial state is in the ground state, or any other state with K=0 the coupling operators have the same structure as in Thm. 4.1 and thus any linear combination of eigenstates with quantum numbers J, K=0, m can be reached (same result directly applies).

Outline

- 1 Controllability
 - Background on controllability criteria
- 2 Control of rotational motion
 - Physical picture
- 3 Controllability assessment with three independently polarized field components
- 4 Controllability for a locked combination of lasers
- 5 Controllability with two lasers
 - Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions
 - Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

What if $\epsilon_k(t)$, k=-1,0,1 are not chosen independently but with a locked linear dependence through coefficients α_k : $\overrightarrow{\epsilon(t)} \cdot \overrightarrow{d} = \epsilon(t) \{ \alpha_{-1} Y_1^{-1} + \alpha_0 Y_1^0 + \alpha_1 Y_1^1 \}.$

There exist non-controllable cases for any given linear combination:

$$E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \ \overrightarrow{e(t)} \cdot \overrightarrow{d} = \epsilon(t)\mu, \ \mu = \begin{pmatrix} 0 & \alpha_{-1} & \alpha_0 & \alpha_1 \\ \alpha_{-1} & 0 & 0 & 0 \\ \alpha_0 & 0 & 0 & 0 \\ \alpha_1 & 0 & 0 & 0 \end{pmatrix}$$

This system is such that for all α_k (k=-1,0,1) the Lie algebra generated by iE and $i\mu$ is u(2), thus the system is not controllable with one laser field (but ok with 3).

Theorem

Let $A, B_1, ..., B_K$ be elements of a finite dimensional Lie algebra L. For $\alpha = (\alpha_1, ..., \alpha_K) \in \mathbb{R}^K$ we denote L_α as the Lie algebra generated by A and $B_\alpha = \sum_{k=1}^K \alpha_k B_k$. Define the maximal dimension of L_α

$$d_{A,B_1,\ldots,B_K}^1 = \max_{\alpha \in \mathbb{R}^K} dim_{\mathbb{R}}(L_\alpha). \tag{19}$$

Then with probability one with respect to α , $dim(L_{\alpha}) = d^1_{A,B_1,...,B_K}$.

Remark

The dimension $d_{A,B_1,...,B_K}^1$ is specific to the choice of coupling operators B_k (easily computed).

Proof. List of all possible iterative commutators constructed from A and B_{α} :

$$C^{\alpha} = \{\zeta_{1}^{\alpha} = A, \zeta_{2}^{\alpha} = B, \zeta_{3}^{\alpha} = [A, B_{\alpha}], \zeta_{4}^{\alpha} = [B_{\alpha}, A], \zeta_{5}^{\alpha} = [A, [A, B_{\alpha}]], ...\}.$$
(20)

Note : $\zeta_{i_1}^{\alpha},...,\zeta_{i_r}^{\alpha}$ = linearly independent \iff Gram determinant is non-null (analytic criterion of α);

One of the following alternatives is true:

- either this function is identically null for all α (which is the case e.g., for $\{\zeta_3^\alpha,\zeta_4^\alpha\}$)
- or it is non-null everywhere with the possible exception of a zero measure set.

Let \mathcal{F} dense in \mathbb{R}^K such that if $\zeta_{i_1}^{\alpha},...,\zeta_{i_r}^{\alpha}$ are linearly independent for one value of $\alpha \in \mathbb{R}^K$ then they are linearly independent for all $\alpha' \in \mathcal{F}$.

Denote by α^* some value such that $dim_{\mathbb{R}}(L_{\alpha^*}) = d^1_{A,B_1,\dots,B_K}$; then there exists a set such that $\{\zeta_{i_1}^{\alpha^*},\dots,\zeta_{i_{d_1}^{\alpha},B_1,\dots,B_K}^{\alpha^*}\}$ are linearly independent; thus $\{\zeta_{i_1}^{\alpha^*},\dots,\zeta_{i_{d_M}^{\alpha}}^{\alpha^*}\}$ linearly independent for any $\alpha\in\mathcal{F}$; thus $dim_{\mathbb{R}}(L_{\alpha})\geq d^1_{A,B_1,\dots,B_K}$ for all $\alpha\in\mathcal{F}$, q.e.d. (maximality of d^1_{A,B_1,\dots,B_K}).

Remark

In numerical tests the Lie algebra generated by iE and $iD_{\alpha}=i\sum_{k=-1}^{1}\alpha_{k}D_{k}$. always had dimension $(N-2)^{2}$; can this be proved ???

Open question: the algebras for $\alpha \in \mathbb{R}^K$ are isomorphic to subalgebras of the Lie algebra with maximal dimension ?

Outline

- 1 Controllability
 - Background on controllability criteria
- 2 Control of rotational motion
 - Physical picture
- 3 Controllability assessment with three independently polarized field components
- 4 Controllability for a locked combination of lasers
- 5 Controllability with two lasers
 - Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions
 - Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Controllability with two lasers

Theorem

Let $A, B_1, ..., B_K$ be elements of a finite dimensional Lie algebra L. We denote for $\alpha = (\alpha_1, ..., \alpha_K) \in \mathbb{R}^K$ and $\beta = (\beta_1, ..., \beta_K) \in \mathbb{R}^K$ by $L_{\alpha,\beta}$ the Lie algebra generated by $A, B_{\alpha} = \sum_{k=1}^K \alpha_k B_k$ and $B_{\beta} = \sum_{k=1}^K \beta_k B_k$.

Define the maximal dimension of L_{α}

$$d_{A,B_1,\ldots,B_K}^2 = \max_{\alpha \in \mathbb{R}^K} dim_{\mathbb{R}}(L_{\alpha,\beta}). \tag{21}$$

Then with probability one with respect to α, β , $dim(L_{\alpha,\beta}) = d_M^2$.

Controllability with two lasers

Field shaped in the \overrightarrow{Z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions

Field shaped in the \overrightarrow{Z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions

Figure: Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions, same conventions apply. The $\epsilon_{-1}=0$, the coupling realized by the operator D_{-1} disappears and the state $|Y_{J_{\max}}^{m=J_{\max}}\rangle$ is not connected with the others. In particular the population in state $|Y_{J_{\max}}^{m=J_{\max}}\rangle$ cannot be changed by the two lasers and thus will be a conserved quantity.

Controllability with two lasers

Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions

Field shaped in the \overrightarrow{z} and $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ directions

Theorem

Consider the model of Thm.4.1 with $\epsilon_{-1}=0$. Let $|\psi_I\rangle$ and $|\psi_F\rangle$ be two states that have the same population in $|Y_{J_{\max}}^{m=J_{\max}}\rangle$ i.e., $|\langle\psi_I,Y_{J_{\max}}^{m=J_{\max}}\rangle|^2=|\langle\psi_F,Y_{J_{\max}}^{m=J_{\max}}\rangle|^2$. Then $|\psi_F\rangle$ can be reached from $|\psi_I\rangle$ with controls $\epsilon_0(t)$ and $\epsilon_1(t)$.

Similar analysis applies for \overrightarrow{z} and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions; the population of $|Y_{J_{max}}^{m=-J_{max}}\rangle$ is conserved and the compatibility relation reads:

$$|\langle \psi_I, Y_{J_{max}}^{m=-J_{max}} \rangle|^2 = |\langle \psi_F, Y_{J_{max}}^{m=-J_{max}} \rangle|^2.$$
 (22)

Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Figure: Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions. Two connectivity sets appear: $X_1=\{|Y_0^0\rangle,|Y_1^{\pm 1}\rangle,|Y_2^{\pm 2}\rangle,|Y_2^0\rangle,...\}$ connected with $|Y_0^0\rangle$ (filled black rectangles) and $X_2=\{|Y_1^0\rangle,|Y_2^{\pm 1}\rangle,|Y_3^{\pm 2}\rangle,|Y_3^0\rangle,...\}$. connected with $|Y_1^0\rangle$ (empty rectangles).

Field shaped in the $\frac{\overrightarrow{x}+i\overrightarrow{y}}{\sqrt{2}}$ and $\frac{\overrightarrow{x}-i\overrightarrow{y}}{\sqrt{2}}$ directions

Conservation law

$$\sum_{|Y_J^m\rangle \in X_1} |\langle \psi_I, Y_J^m \rangle|^2 = \sum_{|Y_J^m\rangle \in X_1} |\langle \psi_F, Y_J^m \rangle|^2.$$
 (23)

Theorem

Consider the model of the Thm.4.1 with $\epsilon_{-1}=0$. Let $|\psi_I\rangle$ and $|\psi_F\rangle$ be two states compatible in the sense of Eqn. (23). Then $|\psi_F\rangle$ can be reached from $|\psi_I\rangle$ with controls $\epsilon_{-1}(t)$ and $\epsilon_{1}(t)$.

Proof Construct Lie algebra for each laser then use the controllability criterion for independent systems.